
123

Chapter 3

3. Models of Parallel Computation

Silicon Graphics, makes multiprocessor computer systems. You can use any of several
programming models to exploit the parallel capabilities of the hardware. This chapter
reviews the parallel programming models, supplying enough information that you can
select one model. Pointers to more detailed documentation of each model are included.
The major topics are:

• “Parallel Hardware and Programming Models” on page 123 provides a quick
survey of the programming models and their relationship to the hardware.

• “Using Statement-Level Parallelism” on page 132 discusses using fine-grained
parallel execution in Fortran and C.

• “Using Process-Level Parallelism” on page 137 provides an overview of the use of
coordinated UNIX processes for parallel execution.

• “Using MPI and PVM” on page 142 compares these two interfaces.

Parallel Hardware and Programming Models

Silicon Graphics makes a variety of multiprocessor systems, including

• The CHALLENGE/Onyx systems (and their POWER versions) are symmetric
multiprocessor (SMP) computers. In these systems at least 2, and as many as 36,
identical microprocessors access a single, common memory and a common set of
peripherals through a high-speed bus.

• The POWER CHALLENGEarray™ comprises 2 or more POWER CHALLENGE™
systems connected by a high-speed local HIPPI network. Each node in the array is
an SMP with 2 to 36 CPUs. Nodes do not share a common memory; communication
between programs in different nodes passes through sockets. However, the entire
array can be administered and programmed as a single entity.

124

Chapter 3: Models of Parallel Computation

Most programs that run on these systems execute as if they were in a uniprocessor,
employing the facilities of a single CPU. The IRIX operating system applies CPUs to
different programs in order to maximize system throughput.

However, it is possible to write a program so that it makes use of more than one CPU at
a time. The software interface you use for this is the parallel programming model. Each
model is designed around a different set of assumptions about the hardware, and in
particular about the memory system available.

Parallel Programs on Uniprocessors

It might seem a contradiction, but it is possible to execute some parallel programs in
uniprocessors. Obviously you would not do this expecting the best performance.
However:

• It is possible to restrict and assign the available CPUs of a multiprocessor so that
only one CPU is available to execute a given program, even a program intended to
use parallel execution. This can arise as a brief transient condition as IRIX
dynamically assigns CPUs to programs, or it can arise through the operator using
commands such as mpadmin (see the mpadmin(1) reference page).

• It is easier to debug a parallel program by running it in the more predictable
environment of a uniprocessor.

Most parallel programming models adapt to the available hardware, running
concurrently on multiple CPUs (up to some programmer-defined limit) when the CPUs
are available, but running on a limited number, or even just one CPU, when necessary.
For example, the Fortran programmer can control the number of CPUs used by a MIPpro
Fortran 77 program by setting environment variables before the program starts (see
“Using Statement-Level Parallelism” on page 132).

Parallel Hardware and Programming Models

125

Memory Systems

The key memory issue is this: Can one process access memory data belonging to another
concurrent process, and if so, what is the time penalty for doing so? The answer depends
on the hardware architecture, and determines the optimal programming model.

Single Memory Systems

The CHALLENGE/Onyx system architecture uses a very high speed system bus to
connect all components of the system.

One component is the physical memory system, which plugs into the bus and is equally
available to all other components. Other units that plug into the system bus are I/O
adapters, such as the VME bus adapter. CPU modules containing two MIPS R4000,
R8000, or R10000 CPUs are also plugged into the system bus.

In the CHALLENGE/Onyx architecture, the single, common memory has these features:

• There is a single address map; that is, the same word of memory has the same
address in every CPU.

• There is no time penalty for communication between processes because every word
is accessible in the same amount of time from any CPU.

• All peripherals are equally accessible from any process.

The effect of a single, common memory is that processes running in different CPUs can
share pages of memory, and can update the identical memory locations concurrently. For
example, suppose there are four CPUs available to a Fortran program that processes a
large array of data. You can divide a single DO-loop so that it executes concurrently on
the four CPUs, each CPU working in one-fourth of the array in memory.

As another example, IRIX allows processes to “map” a single segment of memory into
the virtual address spaces of two or more concurrent processes. Two processes can
transfer data at memory speeds, one putting the data into a mapped segment and the
other process taking the data out. They can coordinate their access to the data using
semaphores located in the shared segment.

126

Chapter 3: Models of Parallel Computation

Multiple Memory Systems

In an Array system such as a POWERCHALLENGEarray, each node is a computer built
on the CHALLENGE/Onyx architecture. However, the only connection between nodes
is the high-speed HIPPI bus between nodes. The system does not offer a single system
memory; instead, there is a separate memory subsystem in each node. As a result:

• There is not a single address map. A word of memory in one node cannot be
addressed at all from another node.

• There is a time penalty for some interprocess communication. When data passes
between programs in different nodes, it passes through a software socket and over
the HIPPI network, which takes longer than a memory-to-memory transfer.

• Peripherals are accessible only in the node to which they are physically attached.

Nevertheless it is possible to design an application that executes concurrently in multiple
nodes of an Array. The message-passing interface (MPI) is designed specifically for this.

Types of Parallel Models

The IRIX system supports a variety of parallel programming models. You can compare
these models on two features:

Granularity The relative size of the units of computation that are affected:
single statements, functions, or entire processes.

Communication
channel

The basic mechanism by which the independent, concurrent units
of the program exchange data and synchronize their activity.

Parallel Hardware and Programming Models

127

A summary comparison of the available models is shown in Table 3-1.

Statement-Level Parallelism

Parallelism at the finest level of granularity is provided for three languages:

• MIPSpro Fortran 77 supports compiler directives that command parallel execution
of the bodies of DO-loops. The MIPSpro POWER Fortran 77 product is a
preprocessor that automates the insertion of these directives in a serial program.

• MIPSpro Fortran 90 supports parallelizing directives similar to MIPSpro Fortran 77,
and the MIPSpro POWER Fortran 90 product automates their placement.

• MIPSpro POWER C supports compiler pragmas that command parallel execution
of segments of code. The IRIS POWER C analyzer automates the insertion of these
pragmas in a serial program.

Table 3-1 Comparing Parallel Models

Model Granularity Communication

Power Fortran™, IRIS
POWER C™

Looping statement (DO or for
statement)

Shared variables in a single user
address space.

Ada95 tasks Ada Procedure Shared variables in a single user
address space.

Lightweight UNIX processes
(sproc())

C function Arena memory segment in a
single user address space.

General UNIX processes
(fork(), exec())

Process Arena segment mapped to
multiple address spaces.

Remote Procedure Call (RPC) Process Memory copy within node or
UDP or TCP network between
nodes.

Portable Virtual Memory
(PVM)

Process Memory copy within node or
TCP
socket between nodes.

Message-Passing (MPI) Process Memory copy within node or
TCP socket between nodes.

128

Chapter 3: Models of Parallel Computation

In all three languages, the run-time library—which provides the execution environment
for the compiled program—contains support for parallel execution. The compiler
generates library calls that create subprocesses and distribute loop iterations to them.

The run-time support can adapt itself dynamically to the number of available CPUs.
Alternatively, you can control it—using program source statements or using
environment variables at execution time—to use a certain number of CPUs.

Statement-level parallel support is based on using common variables in memory, and so
it can be used only within the bounds of a single-memory system, a CHALLENGE or a
single node in a POWERCHALLENGEarray.

Thread-Level Parallelism

A thread is an independent execution state within the context of a larger program. A
UNIX process normally consists of an address space and one thread, together with a
large collection of state information: a table of open files, a set of signal handlers, a
process ID, an effective user ID, and so on.

There are three key differences between a thread and a process:

• A UNIX process has its own set of UNIX state information, for example, its own
effective user ID, signal handlers, and set of open file descriptors.

Threads exist within a process and do not have distinct copies of these UNIX state
values. Threads share the single state belonging to their process.

• Normally, each UNIX process has a unique address space of memory segments that
are accessible only to that process (lightweight processes created with sproc() share
an address space; see “Process-Level Parallelism” on page 129).

Threads within a process share the single address space belonging to their process.

• Processes are scheduled by the IRIX kernel. A change of process requires two
context changes, into the kernel domain and back to the user domain of the next
process. Since a process carries a large amount of state information, the change from
the context of one process to the context of another can entail many instructions.

In contrast, threads are scheduled by code that operates almost entirely in the user
domain without kernel interference. Since threads have less state information,
thread scheduling is faster than process scheduling.

Parallel Hardware and Programming Models

129

At this time, IRIX supports only one thread per process. However, Silicon Graphics has
announced the intention of supporting the POSIX standard for multithreaded
applications in a future release.

In the meantime, the Silicon Graphics implementation of the Ada 95 language includes
support for multitasking Ada programs—using what are essentially threads in the
meaning used here. For a complete discussion of the Ada 95 task facility, refer to the
Ada 95 Reference Manual, which installs with the Ada 95 compiler (GNAT) product.

Process-Level Parallelism

A UNIX process consists of an address space, a varied set of state values, and one thread
of execution. The main task of the IRIX kernel is to create processes and to dispatch them
to different CPUs so as to maximize the utilization of the system.

IRIX contains a variety of interprocess communication (IPC) mechanisms, which are
discussed in Chapter 2, “Interprocess Communication.” These mechanisms can be used
to exchange data and to coordinate the activities of multiple, asynchronous processes
within a single-memory system. (Processes running in different nodes of an array must
use one of the abstract models described in the next topic.)

In traditional UNIX practice, one process creates another with the system call fork(),
which makes a duplicate of the calling process, after which the two copies execute
concurrently. Typically the new process immediately uses the exec() function to load a
new program.

The fork(2) reference page contains a complete list of the state values that are duplicated
when a process is created. The exec(2) reference page details the process of creating a new
program image for execution.

IRIX also supports the system function sproc(), which creates a lightweight process. A
process created with sproc() shares some of its state values with its parent process (the
sproc(2) reference page details how this sharing is specified).

In particular, a lightweight process does not have its own address space; it continues to
execute in the address space of the original process. In this respect, a lightweight process
is like a thread (see “Thread-Level Parallelism” on page 128). However, a lightweight
process differs from a true thread in two significant ways:

130

Chapter 3: Models of Parallel Computation

• A lightweight process still has a full set of UNIX state values, including its own
signal handlers. Some of these values, for example the table of open file descriptors,
can be shared with the parent process, but in general a lightweight process carries
more state information than a thread.

• Dispatch of lightweight processes is done in the kernel, and a context switch
between lightweight processes, even when they share the same address space, is
time-consuming.

The library support for statement-level parallelism is based on the use of lightweight
processes, coordinating their activities through semaphores (see “Statement-Level
Parallelism” on page 127 and “Using IRIX Semaphores” on page 45).

Portable, Abstract Models

There are three portable, abstract models of parallel execution that are supported by
Silicon Graphics systems. Each provides a method of distributing a computation within
a single-memory system or across the nodes of a multiple-memory system, without
having to reflect the system configuration in the source code. The three programming
models are:

• Message-Passing Interface (MPI)

• Portable Virtual Memory (PVM)

• Remote Procedure Call (RPC) interface

Each of the three has its particular strengths and weaknesses.

Message-Passing Interface (MPI) Model

MPI is a portable standard programming interface for the construction of a portable,
parallel application in Fortran 77 or in C, especially when the application can be
decomposed into a fixed number of processes operating in a fixed topology (for example,
a pipeline, grid, or tree).

A highly tuned, efficient implementation of MPI is included with the Array software CD
for Array systems such as the POWER CHALLENGEarray. MPI is the recommended
parallel model for use with Array products.

MPI is discussed in more detail under “Using MPI and PVM” on page 142.

Parallel Hardware and Programming Models

131

Portable Virtual Machine (PVM) Model

PVM is an integrated set of software tools and libraries that emulates a general-purpose,
flexible, heterogeneous, concurrent computing framework on interconnected computers
of varied architecture. Using PVM, you can create a parallel application that executes as
a set of concurrent processes on a set of computers. The set can include Silicon Graphics
uniprocessors, multiprocessors, and nodes of Array systems.

An implementation of PVM is included with the Array software CD for Silicon Graphics
Array systems. PVM has a better ability to deal with a heterogenous computer network
than MPI does. In every other way, MPI is preferable. When the application runs in the
context of a single Array system, an MPI design has better performance.

PVM is discussed in more detail under “Using MPI and PVM” on page 142.

Remote Procedure Call (RPC) Model

RPC is a standard programming interface originally developed at Sun Microsystems, Inc.
and used as the basis of Sun’s Network File System (NFS) standard. RPC is used
extensively within the IRIX system (and in most current UNIX implementations) to
provide NFS and network management services.

The purpose of the RPC interface is to distribute services across a network, so that one
program can easily supply a service to all others. An RPC server program registers the
services it can provide with RPC. A client program anywhere in the network can issue a
remote procedure call for a registered service, and the RPC interface takes care of locating
the server program, invoking its service, and returning the result values to the caller.

RPC by itself does not support concurrent execution. A remote procedure call, like a local
procedure call, is synchronous; that is, the caller is blocked until the called procedure
completes its work. RPC is a method of distributing a computation over a network, not
a method of parallel execution. However, RPC can be combined with other parallel
execution models. For example, a thread or lightweight process can issue remote
procedure calls.

RPC libraries are included in IRIX. For an overview of RPC programming, see the IRIX
Network Programming Guide. For further details, refer to the rpc(3R) reference page.

132

Chapter 3: Models of Parallel Computation

Using Statement-Level Parallelism

As noted under “Statement-Level Parallelism” on page 127, you can use statement-level
parallelism in three language packages: Fortran 77, Fortran 90, and C. This type of
parallelism is unique in that you begin with a normal, serial program, and you can
always return the program to serial execution by recompiling. Every other parallel model
requires you to plan and write a parallel program from the start.

The parallel features of all three of these languages are documented in detail in the
manuals listed in Table 3-2.

In addition to these products from Silicon Graphics, the High Performance Fortran (HPF)
compiler from the Portland Group is a compiler for Fortran 90 augmented to the HPF
standard. It supports automatic parallelization. (Refer to http://www.pgroup.com for
more information).

The FORGE products from Applied Parallel Research (APRI) contain a Fortran 77 source
analyzer that can insert parallelizing directives, although not the directives supported by
MIPSpro Fortran 77. (Refer to http://www.infomall.org/apri for more information.)

Table 3-2 Documentation for Statement-Level Parallel Products

Manual Document

Number

Contents

IRIS POWER C User’s Guide 007-0702-0x0 Use of the IRIS POWER C Analyzer, including all
pragmas.

MIPSpro Fortran 77
Programmer’s Guide

007-2361-00x General use of Fortran 77, including parallelizing
assertions and directives.

MIPSpro Power Fortran 77
Programmer’s Guide

007-2363-00x Use of the Power Fortran source analyzer to place
directives automatically.

MIPSpro Fortran 90
Programmer’s Guide

007-2761-001 General use of Fortran 90, including parallelizing
assertions and directives.

MIPSpro Power Fortran 90
Programmer’s Guide

007-2760-001 Use of the Power Fortran 90 source analyzer to
place directives automatically.

Using Statement-Level Parallelism

133

Creating Parallel Programs

In each of the three languages, the language compiler supports explicit statements that
command parallel execution (#pragma lines for C; directives and assertions for Fortran).
However, placing these statements is a demanding, error-prone task. It is easy to create
a suboptimal program, or worse, a program that is incorrect in subtle ways. Furthermore,
small changes in program logic can invalidate parallel directives in ways that are hard to
foresee, so it is difficult to maintain a program that has been manually made parallel.

For each language, there is a source-level program analyzer that is sold as a separate
product (IRIS POWER C, MIPSpro Power Fortran 77, MIPSpro Power Fortran 90). The
analyzer identifies sections of the program that can safely be executed in parallel, and
automatically inserts the parallelizing directives. After any logic change, you can run the
analysis again, so that maintenance is easier.

The source analyzer makes conservative assumptions about the way the program uses
data. As a result, it often is unable to find all the potential parallelism. However, the
analyzer produces a detailed listing of the program source, showing each segment that
could or could not be parallelized, and why. Directed by this listing, you insert source
assertions that give the analyzer more information about the program.

The method of creating an optimized parallel program is as follows:

1. Write a complete application that runs on a single processor.

2. Completely debug and verify the correctness of the program in serial execution.

3. Apply the source analyzer and study the listing it produces.

4. Add assertions to the source program. These are high-level statements that describe
the program’s use of data, not explicit commands to parallelize.

5. Repeat steps 3 and 4 until the analyzer finds as much parallelism as possible.

6. Run the program on a single-memory multiprocessor.

When the program requires maintenance, you make the necessary logic changes and,
simultaneously, you remove any assertions about the changed code—unless you are
certain that the assertions are still true of the modified logic. Then repeat the preceding
procedure from step 2.

134

Chapter 3: Models of Parallel Computation

Managing Parallel Execution

The run-time library for each of the languages uses IRIX lightweight processes to
implement parallel execution (see “Process-Level Parallelism” on page 129).

When a parallel program starts, the run-time support creates a pool of lightweight
processes using the sproc() function. Initially the extra processes are blocked, and one
process executes the opening passage of the program. When execution reaches a parallel
section, the run-time support unblocks as many processes as necessary. Each one begins
to execute the same block of statements. The processes share global variables, while each
has its own copy of variables that are local to one iteration of a loop, such as a loop index.

When a process completes its portion of the work of that section, it returns to the
run-time library code, where it picks up another portion of work if any work remains, or
simply blocks until the next time it is needed. At the end of the parallel section, all extra
processes are blocked and the original process continues to execute the serial code
following the parallel section.

Controlling the Degree of Parallelism

You can specify the number of lightweight processes that are started by a program. In
IRIS POWER C, you can use #pragma numthreads to specify the exact number of processes
to start, but it is not a good idea to embed this number in a source program. In all
implementations, the run-time library by default starts enough processes that there is
one for each CPU in the system. That default is often too high, since usually at least one
of the CPUs is dedicated to other work (often more than one).

The run-time library checks an environment variable, MPC_SET_NUM_THREADS, for
the number of processes to start. You can use this environment variable to choose the
number of processes used by a particular run of the program, thereby tuning the
program’s requirements to the system load. You can even force a parallelized program to
execute on a single CPU when necessary.

MIPSpro Fortran 77 and MIPSpro Fortran 90 also recognize additional environment
variables that specify a range of process numbers, and use more or fewer processes
within this range as system load varies. (See the Programmer’s Guide for the language for
details.)

Using Statement-Level Parallelism

135

At certain points the multiple processes must wait for one another before continuing.
They do this by waiting in a busy-loop for a certain length of time, then by blocking until
they are signaled. You can specify the amount of time that a process should spend
spinning before it blocks, using either source directives or an environment variable (see
the Programmer’s Guide for the language for system functions for this purpose).

Choosing the Loop Schedule Type

Most parallel sections are loops. The benefit of parallelization is that some iterations of
the loop are executed in one CPU, concurrent with other iterations of the same loop in
other CPUs. But how are the different iterations distributed across processes? All three
languages support four possible methods of scheduling loop iterations, as summarized
in Table 3-3. The variables used in Table 3-3 are as follows:

N Number of iterations in the loop, determined from the source or at run-time.

P Number of available processes, set by default or by environment variable
(see “Controlling the Degree of Parallelism” on page 134).

Q Number of a process, from 0 to N-1.

C “Chunk” size, set by directive or by environment variable.

Table 3-3 Loop Scheduling Types

Schedule Purpose

SIMPLE Each process executes N/P iterations starting at Q*(N/P). First process to
finish takes the remainder chunk, if any.

DYNAMIC Each process executes C iterations of the loop, starting with the next undone
chunk unit, returning for another chunk until none are left undone.

INTERLEAVE Each process executes C iterations at C*Q, C*2Q, C*3Q...

GSS Each process executes chunks of decreasing size, (N/2P), (N/4P), ...

136

Chapter 3: Models of Parallel Computation

The effects of the scheduling types depend on the nature of the loops being parallelized.
For example:

• The SIMPLE method works well when N is relatively small. However, unless N is
evenly divided by P, there will be a time at the end of the loop when fewer than P
processes are working, and possibly only one.

• The DYNAMIC and INTERLEAVE methods allow you to set the chunk size so as to
control the span of an array referenced by each process. You can use this to reduce
cache effects. When N is very large so that not all data fits in memory, INTERLEAVE
may reduce the amount of paging compared to DYNAMIC.

• The guided self-scheduling (GSS) method is good for triangular matrices and other
algorithms where loop iterations become faster toward the end.

You can use source directives or pragmas within the program to specify the scheduling
type and chunk size for particular loops. Where you do not specify the scheduling, the
run-time library uses a default method and chunk size. You can establish this default
scheduling type and chunk size using environment variables.

Using Process-Level Parallelism

137

Using Process-Level Parallelism

Software products from Silicon Graphics use process-level parallelism in order to exploit
the power of single-memory multiprocessors. For example, the IRIS Performer graphics
library normally creates a separate lightweight process to manage the graphics pipe in
parallel with rendering work. The run-time library for statement-level parallelism
creates a pool of lightweight processes and dispatches them to execute parts of loop code
in parallel (see “Managing Parallel Execution” on page 134).

Parallelism in Real-Time Applications

In real-time programs such as aircraft or vehicle simulators, separate processes are used
to distribute the work of the simulation onto multiple CPUs. In these demanding
applications, the programmer frequently uses IRIX facilities to

• reserve one or more CPUs of a multiprocessor for exclusive use by the application

• isolate the reserved CPUs from all interrupts

• assign specific processes to execute on specific, reserved CPUs

These facilities are described in detail in the REACT Real-Time Programmer’s Guide
(007-2499-00x). Also covered in that book is the use of the Frame Scheduler, an alternate
process scheduler. The normal process scheduling algorithm of the IRIX kernel attempts
to keep all CPUs busy and to keep all processes advancing in a fair manner. This
algorithm is in conflict with the stringent needs of a real-time program, which needs to
dedicate predictable amounts of hardware capacity to its processes, without regard to
fairness.

The Frame Scheduler seizes one or more CPUs of a multiprocessor, isolates them, and
executes a specified set of processes on each CPU in strict rotation. The Frame Scheduler
has much lower overhead than the normal IRIX scheduler; and it has features designed
for real-time work, including detection of overrun (when a scheduled process does not
complete its work in the necessary time) and underrun (when a scheduled process fails
to execute in its turn).

At this writing there are no real-time applications that use multiple nodes of an Array
system.

138

Chapter 3: Models of Parallel Computation

Process Synchronization and Share Groups

IRIX provides a variety of features to make it possible to build an application consisting
of multiple, lightweight processes. In general, a lightweight process is one that shares the
address space of its parent process (see “Process-Level Parallelism” on page 129). The
parent process and the sibling processes that it creates are a share group. IRIX provides
special services to share groups.

Process Communication and Coordination

IRIX supports a wide range of interprocess communication (IPC) facilities. These are
discussed in detail in Chapter 2, “Interprocess Communication.” They include:

• The use of shared arenas for common memory (see “Initializing a Shared Arena” on
page 36 and the following topics).

• IRIX semaphores (“Using IRIX Semaphores” on page 45), locks (“Using Locks” on
page 47) and barriers (“Using Barriers” on page 49) for coordination and mutual
exclusion.

The IRIX semaphores and locks are especially tuned to efficiency in a
multiprocessor environment.

• Portable support for interprocess messages, shared memory, and semaphores
(“System V IPC Overview” on page 51).

The REACT™/Pro product includes a number of examples of real-time programs that
use IRIX IPC features. The REACT Real-Time Programmer’s Guide includes the source code
of additional examples.

Process Creation

The sproc() and sprocsp() functions create a lightweight process (see the sproc(2)
reference page). The difference between the calls is that sproc() allocates a new memory
segment to serve as the stack for the new process. You use sprocsp() to specify a stack
segment that you have already allocated—for example, a block of memory that you
allocate and lock against paging using mpin().

In the traditional fork() call, the new process executes the identical program text as the
old one; that is, both processes “return” from fork() and you distinguish them by the
return code, which is 0 in the child process and the new process ID in the parent.

Using Process-Level Parallelism

139

The sproc() call differs in that it takes as an argument the address of the function that
should be executed by the new process. Often, each child process has a particular role to
play, and the function that represents that work.

Another design is possible. The sproc() function has considerable overhead. It is
inefficient to continually create and destroy child processes. In some applications, you
may have to manage a flow of many, relatively short, activities which should be done in
parallel. You do not want to create a new child process for each activity and destroy it
afterward. Instead, you can create a pool containing a small number of general-purpose
processes. When a piece of work needs to be done, you can dispatch one process to do it.
The fragmentary code in Example 3-1 shows the general approach.

Example 3-1 Partial Code to Manage a Pool of Processes

typedef void (*func)(void *arg) workFunc;
struct oneSproc {

struct oneSproc *next; /* -> next oneSproc ready to run */
workFunc calledFunc; /* -> function sproc is to call */
void *callArg; /* argument to pass to called func */
usema_t *sprocDone; /* optional sema to post on completion */
usema_t *sprocWait; /* sproc waits for work here */

} sprocList[NUMSPROCS];
usema_t *readySprocs; /* count represents sprocs ready to work */
uslock_t sprocListLock; /* mutex control of sprocList head */
struct oneSproc *sprocList; /* -> first ready oneSproc */
/*
|| Put a oneSproc structure on the ready list and sleep on it.
|| Called by a child process when its work is done.
*/
void sprocSleep(struct oneSproc *theSproc)
{

ussetlock(sprocListLock); /* acquire exclusive rights to sprocList */
theSproc->next = sprocList; /* put self on the list */
sprocList = theSproc;
usunsetlock(sprocListLock); /* release sprocList */
usvsema(readySprocs); /* notify master, at least 1 on the list */
uspsema(theSproc->sprocWait);/* sleep until master posts me */

}
/*
|| Body of a general-purpose child process. The argument, which must
|| be declared void* to match the sproc() prototype, is the oneSproc
|| structure that represents this process. The contents of that
|| struct, in particular sprocWait, are initialized by the parent.
*/

140

Chapter 3: Models of Parallel Computation

void childBody(void *theSprocAsVoid)
{

struct oneSproc *mySproc = (struct oneSproc *)theSprocAsVoid;
/* here one could establish signal handlers, etc. */
for(;;)
{

sprocSleep(mySproc); /* wait for work to do */
mySproc->calledFunc(mySproc->callArg); /* do the work */
if (mySproc->sprocDone) /* if a completion sema is given, */

usvsema(mySproc->sprocDone); /* ..post it */
}

}
/*
|| Acquire a oneSproc structure from the ready list, waiting if necessary.
|| Called by the master process as part of dispatching a sproc.
*/
struct oneSproc *getSproc()
{

struct oneSproc *theSproc;
uspsema(readySprocs); /* wait until at least 1 sproc is free */
ussetlock(sprocListLock); /* acquire exclusive rights to sprocList */
theSproc = sprocList; /* get address of first free oneSproc */
sprocList = theSproc->next; /* make next in list, the head of list */
usunsetlock(sprocListLock); /* release sprocList */
return theSproc;

}
/*
|| Start a function going asynchronously. Called by master process.
*/
void execFunc(workFunc toCall, void *callWith, usema_t *done)
{

struct oneSproc *theSproc = getSproc();
theSproc->calledFunc = toCall; /* set address of func to exec */
theSproc->callArg = callWith; /* set argument to pass */
theSproc->sprocDone = done; /* set sema to post on completion */
usvsema(theSproc->sprocWait); /* wake up sleeping process */

}

Using Process-Level Parallelism

141

Process Scheduling Features

The IRIX kernel supports special process scheduling rules for share groups. This permits
you to increase the efficiency of a parallel program in some cases. The feature is
controlled by the schedctl() kernel function (detailed in the schedctl(2) reference page).

When schedctl() is called with the SCHEDMODE argument, it sets one of three
scheduling rules for the share group whose member issues the call:

Under gang scheduling, IRIX tries to run all processes of a share group concurrently.
When this is possible (in other words, when there are enough available CPUs in the
multiprocessor), gang scheduling can greatly reduce lock conflicts between processes.

Without gang scheduling, one member of the share group can acquire a lock and then be
suspended. Another member, attempting to acquire the lock, is also suspended until the
first process is dispatched again and releases the lock.

With gang scheduling, when a second member attempts to acquire the lock, the first
process is almost certainly executing at the same time, and releases the lock while the
second member is still spinning.

SGS_FREE The normal situation, in which each process is scheduled individually.

SGS_SINGLE All but the master process of the share group are blocked. This permits
the master process to perform initialization or error recovery without
contention from other members of the group.

SGS_GANG All processes of the group run concurrently, provided there are sufficient
CPUs available.

142

Chapter 3: Models of Parallel Computation

Process Management Features

The prctl() kernel function provides a variety of process-related management tools
(detailed in the prctl(2) reference page). One feature useful for parallel programs is the
PR_MAXPPROCS query. This returns the number of different CPUs that the calling
process could use for execution. The returned number is 1 when the caller has been
assigned to a particular CPU. Otherwise it is the number of unrestricted CPUs in the
system. A parent process could use this during initialization to find out the degree of
parallelism it can hope to achieve.

The sysmp() kernel function provides information about a multiprocessor (detailed in
the sysmp(2) reference page). Some of the queries useful to a parallel program include
MP_NPROCS, return number of CPUs in the system, and MP_NAPROCS, return the
number of CPUs available for normal process scheduling.

Using MPI and PVM

MPI (see “Message-Passing Interface (MPI) Model” on page 130) and PVM (see
“Portable Virtual Machine (PVM) Model” on page 131) are two approaches to the same
problem: how to distribute a concurrent program across a cluster of computers.

Choosing Between MPI and PVM

Silicon Graphics has adopted the MPI interface as the primary and preferred model for
concurrent applications on Array processors. There are occasions when you may elect to
use PVM instead, but in general MPI is strongly recommended for new applications and
for applications that are being ported to an Array system.

In many ways, MPI and PVM are similar:

• Each is designed, specified, and implemented by third parties who have no direct
interest in selling hardware.

• Support for each is available “on the net” at low or no cost.

• Each provides a set of portable, high-level, functions with which a group of
processes can make contact and exchange data without having to be aware of the
communication medium.

Using MPI and PVM

143

• Each supports C and Fortran 77.

• Each provides for automatic conversion between different representations of the
same kind of data so that processes can be distributed over a hetergeneous
computer network.

The primary reason MPI is preferred for Array systems is performance. The design of
MPI is such that a highly optimized implementation could be created for the
homogenous environment of Silicon Graphics Array systems. PVM implementations for
Array systems do not perform as well for reasons that are rooted in the PVM interface
design.

Another difference is in the support for the “topology” (the interconnect pattern: grid,
torus, or tree) of the communicating processes. In MPI, the group size and topology are
fixed when the group is created. This permits low-overhead group operations and,
because the topology is normally inherent in the algorithmic design, the lack of run-time
flexibility is not a problem. In PVM, group composition is dynamic, which requires the
use of a “group server” process and causes more overhead in common group-related
operations.

Other reasons can be found in the design details of the two interfaces. MPI, for example,
supports asynchronous and multiple message traffic, so that a process can wait for any
of a list of message-receive calls to complete, and can initiate concurrent sending and
receiving. MPI provides for a “context” qualifier as part of the “envelope” of each
message. This permits you to build encapsulated libraries that exchange data
independently of the data exchanged by the client modules. MPI also provides several
elegant data-exchange functions for use by a program that is emulating an SPMD parallel
architecture.

PVM is possibly more suitable for distributing a program across a heterogenous
network, including both uniprocessors and multiprocessors and including computers
from multiple vendors. When the application runs in the environment of a Silicon
Graphics Array system, MPI is the recommended interface.

Porting From PVM to MPI

Because MPI and PVM address similar problems in ways that are conceptually similar,
you can consider porting a program from PVM to MPI in order to get better performance
on an Array system. A detailed discussion of this process, with examples, appears in
Appendix B, “Converting PVM Applications to MPI.”

